[微服务] 微服务的实践

微服务架构所需解决的问题

Posted by Mr.Vincent on 2019-07-01
Estimated Reading Time 5 Minutes
Words 1.5k In Total
Viewed Times

概述

要实际的应用微服务,需要解决以下问题:

  • 客户端如何访问这些服务
  • 每个服务之间如何通信
  • 如此多的服务,如何实现?
  • 服务挂了,如何解决?(备份方案,应急处理机制)

客户端如何访问这些服务

原来的 Monolithic 方式开发,所有的服务都是本地的,UI 可以直接调用,现在按功能拆分成独立的服务,跑在独立的一般都在独立的虚拟机上的 Java 进程了。客户端 UI 如何访问他?

后台有 N 个服务,前台就需要记住管理 N 个服务,一个服务 下线、更新、升级,前台就要重新部署,这明显不服务我们拆分的理念,特别当前台是移动应用的时候,通常业务变化的节奏更快。

另外,N 个小服务的调用也是一个不小的网络开销。还有一般微服务在系统内部,通常是无状态的,用户登录信息和权限管理最好有一个统一的地方维护管理(OAuth)。

所以,一般在后台 N 个服务和 UI 之间一般会一个代理或者叫 API Gateway,他的作用包括:

  • 提供统一服务入口,让微服务对前台透明
  • 聚合后台的服务,节省流量,提升性能
  • 提供安全,过滤,流控等API管理功能

其实这个 API Gateway 可以有很多广义的实现办法,可以是一个软硬一体的盒子,也可以是一个简单的 MVC 框架,甚至是一个 Node.js 的服务端。他们最重要的作用是为前台(通常是移动应用)提供后台服务的聚合,提供一个统一的服务出口,解除他们之间的耦合,不过 API Gateway 也有可能成为 单点故障 点或者性能的瓶颈。
1

每个服务之间如何通信

所有的微服务都是独立的 Java 进程跑在独立的虚拟机上,所以服务间的通信就是 IPC(Inter Process Communication),已经有很多成熟的方案。现在基本最通用的有两种方式:

同步调用

  • REST(JAX-RS,Spring Boot)
  • RPC(Thrift, Dubbo)

同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。一般 REST 基于 HTTP,更容易实现,更容易被接受,服务端实现技术也更灵活些,各个语言都能支持,同时能跨客户端,对客户端没有特殊的要求,只要封装了 HTTP 的 SDK 就能调用,所以相对使用的广一些。RPC 也有自己的优点,传输协议更高效,安全更可控,特别在一个公司内部,如果有统一个的开发规范和统一的服务框架时,他的开发效率优势更明显些。就看各自的技术积累实际条件,自己的选择了。

异步消息调用

  • Kafka
  • Notify
  • MessageQueue
    2

异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能保证调用方的服务体验,继续干自己该干的活,不至于被后台性能拖慢。不过需要付出的代价是一致性的减弱,需要接受数据 最终一致性;还有就是后台服务一般要实现 幂等性,因为消息送出于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验);最后就是必须引入一个独立的 Broker

如此多的服务,如何实现?

在微服务架构中,一般每一个服务都是有多个拷贝,来做负载均衡。一个服务随时可能下线,也可能应对临时访问压力增加新的服务节点。服务之间如何相互感知?服务如何管理?

这就是服务发现的问题了。一般有两类做法,也各有优缺点。基本都是通过 Zookeeper 等类似技术做服务注册信息的分布式管理。当服务上线时,服务提供者将自己的服务信息注册到 ZK(或类似框架),并通过心跳维持长链接,实时更新链接信息。服务调用者通过 ZK 寻址,根据可定制算法,找到一个服务,还可以将服务信息缓存在本地以提高性能。当服务下线时,ZK 会发通知给服务客户端。

基于客户端的服务注册与发现

优点是架构简单,扩展灵活,只对服务注册器依赖。缺点是客户端要维护所有调用服务的地址,有技术难度,一般大公司都有成熟的内部框架支持,比如 Dubbo。

基于服务端的服务注册与发现

优点是简单,所有服务对于前台调用方透明,一般在小公司在云服务上部署的应用采用的比较多。
3

服务挂了,如何解决?

前面提到,Monolithic 方式开发一个很大的风险是,把所有鸡蛋放在一个篮子里,一荣俱荣,一损俱损。而分布式最大的特性就是网络是不可靠的。通过微服务拆分能降低这个风险,不过如果没有特别的保障,结局肯定是噩梦。所以当我们的系统是由一系列的服务调用链组成的时候,我们必须确保任一环节出问题都不至于影响整体链路。相应的手段有很多:

  • 重试机制
  • 限流
  • 熔断机制
  • 负载均衡
  • 降级(本地缓存)

4


If you like this blog or find it useful for you, you are welcome to comment on it. You are also welcome to share this blog, so that more people can participate in it. If the images used in the blog infringe your copyright, please contact the author to delete them. Thank you !